111 research outputs found

    Randomized Quantization and Source Coding with Constrained Output Distribution

    Full text link
    This paper studies fixed-rate randomized vector quantization under the constraint that the quantizer's output has a given fixed probability distribution. A general representation of randomized quantizers that includes the common models in the literature is introduced via appropriate mixtures of joint probability measures on the product of the source and reproduction alphabets. Using this representation and results from optimal transport theory, the existence of an optimal (minimum distortion) randomized quantizer having a given output distribution is shown under various conditions. For sources with densities and the mean square distortion measure, it is shown that this optimum can be attained by randomizing quantizers having convex codecells. For stationary and memoryless source and output distributions a rate-distortion theorem is proved, providing a single-letter expression for the optimum distortion in the limit of large block-lengths.Comment: To appear in the IEEE Transactions on Information Theor

    Notes on Information-Theoretic Privacy

    Full text link
    We investigate the tradeoff between privacy and utility in a situation where both privacy and utility are measured in terms of mutual information. For the binary case, we fully characterize this tradeoff in case of perfect privacy and also give an upper-bound for the case where some privacy leakage is allowed. We then introduce a new quantity which quantifies the amount of private information contained in the observable data and then connect it to the optimal tradeoff between privacy and utility.Comment: The corrected version of a paper appeared in Allerton 201

    Privacy-Aware MMSE Estimation

    Full text link
    We investigate the problem of the predictability of random variable YY under a privacy constraint dictated by random variable XX, correlated with YY, where both predictability and privacy are assessed in terms of the minimum mean-squared error (MMSE). Given that XX and YY are connected via a binary-input symmetric-output (BISO) channel, we derive the \emph{optimal} random mapping PZ∣YP_{Z|Y} such that the MMSE of YY given ZZ is minimized while the MMSE of XX given ZZ is greater than (1−ϵ)var(X)(1-\epsilon)\mathsf{var}(X) for a given ϵ≥0\epsilon\geq 0. We also consider the case where (X,Y)(X,Y) are continuous and PZ∣YP_{Z|Y} is restricted to be an additive noise channel.Comment: 9 pages, 3 figure
    • …
    corecore